import pandas as pd
from sklearn.preprocessing import LabelEncoder,OneHotEncoder
df=pd.read_csv('naive.csv')
X=df.iloc[:,:2].values
Y=df.iloc[:,2].values
le=LabelEncoder()
X[:,0]=le.fit_transform(X[:,0])
X[:,1]=le.fit_transform(X[:,1])
print(X)
print(Y)
ohe=OneHotEncoder()
X=ohe.fit_transform(X).toarray()
from sklearn.naive_bayes import GaussianNB
ob=GaussianNB()
ob.fit(X,Y)
print(ob.predict([[0,1,1,0]]))
Dataset:
wind,humidity,temprature
weak,normal,hot
strong,high ,hot
weak,normal,mild
strong,high ,mild
weak,normal,cool
strong,normal,mild
weak,high ,mild
strong,normal,hot
strong,normal,mild
strong,normal,cool
Output:
[[1 1]
[0 0]
[1 1]
[0 0]
[1 1]
[0 1]
[1 0]
[0 1]
[0 1]
[0 1]]
['hot' 'hot' 'mild' 'mild' 'cool' 'mild' 'mild' 'hot' 'mild' 'cool']
['mild']
No comments:
Post a Comment