Wednesday, 9 January 2019

Python program to implement Digital Signature (CSS)


import random

'''
Euclid's algorithm for determining the greatest common divisor
Use iteration to make it faster for larger integers
'''
def gcd(a, b):
while b != 0:
a, b = b, a % b
return a

'''
Euclid's extended algorithm for finding the multiplicative inverse of two numbers
'''
def multiplicative_inverse(e, phi):
d = 0
x1 = 0
x2 = 1
y1 = 1
temp_phi = phi
while e > 0:
temp1 = temp_phi/e
temp2 = temp_phi - temp1 * e
temp_phi = e
e = temp2
x = x2- temp1* x1
y = d - temp1 * y1
x2 = x1
x1 = x
d = y1
y1 = y
if temp_phi == 1:
return d + phi

'''
Tests to see if a number is prime.
'''
def is_prime(num):
if num == 2:
return True
if num < 2 or num % 2 == 0:
return False
for n in range(3, int(num**0.5)+2, 2):
if num % n == 0:
return False
return True

def generate_keypair(p, q):
if not (is_prime(p) and is_prime(q)):
raise ValueError('Both numbers must be prime.')
elif p == q:
raise ValueError('p and q cannot be equal')
#n = pq
n = p * q

#Phi is the totient of n
phi = (p-1) * (q-1)

#Choose an integer e such that e and phi(n) are coprime
e = random.randrange(1, phi)

#Use Euclid's Algorithm to verify that e and phi(n) are comprime
g = gcd(e, phi)
while g != 1:
e = random.randrange(1, phi)
g = gcd(e, phi)

#Use Extended Euclid's Algorithm to generate the private key
d = multiplicative_inverse(e, phi)
#Return public and private keypair
#Public key is (e, n) and private key is (d, n)
return ((e, n), (d, n))

def encrypt(pk, plaintext):
#Unpack the key into it's components
key, n = pk
#Convert each letter in the plaintext to numbers based on the character using a^b mod m
cipher = [(ord(char) ** key) % n for char in plaintext]
#Return the array of bytes
return cipher

def decrypt(pk, ciphertext):
#Unpack the key into its components
key, n = pk
#Generate the plaintext based on the ciphertext and key using a^b mod m
plain = [chr((char ** key) % n) for char in ciphertext]
#Return the array of bytes as a string
return ''.join(plain)

if __name__ == '__main__':
'''
Detect if the script is being run directly by the user
'''
print ("Digital Signature Encrypter/ Decrypter\n")
p = int(input("Enter a prime number (17, 19, 23, etc): "))
q = int(raw_input("Enter another prime number (Not one you entered above): "))
print ("Generating your public/private keypairs now . . .")
public, private = generate_keypair(p, q)
print ("Your public key is ", public ," and your private key is ", private)
message = raw_input("Enter a message to encrypt with your private key: ")
encrypted_msg = encrypt(private, message)
print ("Your encrypted message is: ")
print (''.join(map(lambda x: str(x), encrypted_msg)))
print ("Decrypting message with public key ", public ," . . .")
print ("Your message is:")
print (decrypt(public, encrypted_msg))

Output:

codept@codept-05 ~/Desktop $ python digi.py
Digital Signature Encrypter/ Decrypter

Enter a prime number (17, 19, 23, etc): 17
Enter another prime number (Not one you entered above): 23
Generating your public/private keypairs now . . .
('Your public key is ', (205, 391), ' and your private key is ', (261, 391))
Enter a message to encrypt with your private key: keyboard
Your encrypted message is:
6522020264382122275257
('Decrypting message with public key ', (205, 391), ' . . .')
Your message is:
keyboard
codept@codept-05 ~/Desktop $

No comments:

Post a Comment